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SUMMARY 

Coating flows are laminar free surface flows, preferably steady and two-dimensional, by which a liquid 
film is deposited on a substrate. Their theory rests on mass and momentum accounting for which 
Galerkin's weighted residual method, finite element basis functions, isoparametric mappings, and a new 
free surface parametrization prove particularly well-suited, especially in coping with the highly 
deformed free boundaries, irregular flow domains, and the singular nature of static and dynamic 
contact lines where fluid interfaces intersect solid surfaces. Typically, short forming zones of rapidly 
rearranging two-dimensional flow merge with simpler asymptotic regimes of developing or developed 
flow upstream and downstream. The two-dimensional computational domain can be shrunk in size by 
imposing boundary conditions from asymptotic analysis of those regimes or by matching to one- 
dimensional finite element solutions of asymptotic equations. 

The theory is laid out with special attention to conditions at free surfaces, contact lines, and open 
inflow and outflow boundaries. Efficient computation of predictions is described with emphasis on a 
grand Newton iteration that converges rapidly and brings other benefits. Sample results for curtain 
coating and roll coating flows of Newtonian liquids illustrate the power and effectiveness of the theory. 
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INTRODUCTION 

The purpose of a coating flow is to deposit a thin and uniform liquid film-in some cases a 
film stratified in composition-on a flexible sheet or solid substrate. Therefore, a coating flow 
is a laminar free surface flow. A successful coating flow is steady and it is two-dimensional, 
except for narrow edge regions. 

Examples of coating flows diagrammed in Figure 1 range from rimming flow, with which 
our coating flow theory to reverse roll coating and curtain coating, which are 
featured below. In rimming flow, a limited amount of liquid is put inside the tube or cylinder 
to be coated, which is oriented horizontally and spun about its axis so that the liquid forms a 
continuous film. There is neither inflow nor outflow, but closed flow. Nor are there contact 
lines where the liquid/gas interface intersects the solid surface. Because it requires neither 
upstream nor downstream boundary conditions nor knowledge of the physics of static and 
dynamic contact lines, and because it has limiting regimes that can be analysed by conven- 
tional perturbation methods, rimming flow proved an apt starting point. In much-studied 
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a) RIMMING FLOW 

S. F. KISTLER AM) L. E. SCRWEN 

b) DIP COATING c) FORWARD ROLL d) REVERSE ROLL 

e) EXTRUSION COATING f) KNIFE COATING 9) SLIDE COATING h) CURTAIN COATING 

Figure 1. Schematic of selected coating operations 

dip-coating there is the complication of upstream inflow and downstream outflow, but still no 
contact lines in the film-forming zones. In other coating flows the contact lines are present, as 
indicated in Figure 1. The physics of flow at and near static contact lines, or separation lines, 
and dynamic contact lines, or wetting lines, was not known at the outset and, because it is 
still not fully elucidated, remains one of the active areas of scientific research about coating 
flows. 

The hallmarks of coating flows are the irregular flow domains and deformed free 
boundaries that rarely conform to the co-ordinate surfaces of any convenient co-ordinate 
system. These are prominent in the forming zones, which are the comparatively short regions 
of rapidly rearranging shear and extensional flow. Standard fluid mechanical approximations 
rarely apply, because viscous, pressure and capillary forces together often with inertial and 
gravity forces all contend with one another in two-dimensional flow. Typically the forming 
zones merge with simpler regimes of developing flow and, far upstream and far downstream, 
regions of fully developed flow. To create a theory from which accurate predictions of such 
complex flows can be calculated, first of all when the liquid is Newtonian, was the challenge. 

The challenge has been met by a strategy of dividing a coating flow into zones, and 
describing each as economically as consistent accuracy allows: efficient free-surface paramet- 
rization and two-dimensional Navier-Stokes equations together with isoparametrically map- 
ped finite element basis functions in the forming zones; one-dimensional asymptotic approxi- 
mations to the Navier-Stokes system together with finite element basis functions in the 
developing flow zones; and closed-form solutions in the zones of fully developed flow. 
Successive zones are of course coupled to their neighbours upstream and downstream, and 
where the coupling is appreciable the zones must be treated all together in order to arrive at 
an efficient algorithm for computing predictions. The tactics can be used in other sorts of 
problems with distinctive zones, free boundaries, or open flow boundaries. 

In this paper we illustrate the theory by its application to curtain coating, a coating 
operation which epitomizes irregular flow domains and deformed free boundaries. At the 
end we also show some theoretical predictions of roll coating from recent work of Coyle et 
a1.3,4 Additional predictions appear in the extended abstract of the present paper.’ 
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ZONES IN COATING FLOWS 

Curtain coating, which is archetypal, is usefully divided into the seven zones shown in Figure 
2: 

1. Feed zone-upstream in the feed slot, where liquid supplied by a manifold in the 
coating die arrives in plane Poiseuille flow, a fully developed, rectilinear flow in which 
no influence is transmitted further upstream (except in virtue of the uniform pressure 
gradient). 

2. Film-forming zone-at the slot exit, where liquid turns direction, acquires a free surface 
which separates from the die at a static contact line, and under gravity begins to flow 
down the slide face of the die. 

3. Film-flow zone-on the slide face, where the liquid film approaches and perhaps attains 
the fully developed Nusselt flow (semiparabolic velocity distribution), which is devoid 
of upstream influence. 

4. Sheet-forming zone-around the die lip, where the liquid film changes direction and 
falls off the die, acquiring a second free surface which also separates at a static contact 
line. 

5. Curtain-flow zone-beyond, where the falling liquid sheet approaches and perhaps 
attains a virtually pure extensional flow regime (irrotational) in which acceleration by 
gravity contends with upstream influence through normal viscous stress that diminishes 
downstream. 

6. Coated-film-forming zone, or impinging zone-where the falling liquid sheet, or 
curtain, meets the moving substrate being coated, and displaces the gas previously in 
contact as it changes direction abruptly, one of the free surfaces appearing to terminate 
in a dynamic contact line. 

7. Take-away zonedownstream, where the coated liquid film approaches and ultimately 
attains the fully developed plug flow of solid-body translation at the substrate speed, 
and there is again no upstream influence. 

FILM FORMIMG ZONE 

FILM FLOW ZONE 

APPROACH TO FULLY 
SHEARING MOTION 

SHEET FORMING ZONE 

DEVELOPED 

CURTAIM FLOW ZONE 

APPROACH TO EXTENSIONAL FLOW 

FREE SURFACE - 

lMPlMGlNG ZONE 

DYNAMIC TAKE-A WAY ZONE 
WETTING LINE DECAY TO SOLID BODY TRANSLATION 

Figure 2. Flow zones in coating: example of curtain coating 
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The crucial zones are those of fully two-dimensional flow rearrangement and abundant 
upstream influence: here the fflm-forming zone, the sheet-forming zone and the impinging 
zone. 

How many of these zones to consider at once is a matter of the strength of upstream 
influence, i.e. normal viscous stress and varying pressure gradient-especially any gradient of 
capillary pressure, the resultant of surface tension acting in a curved free surface. Here these 
effects are weak in the film-flow zone and the curtain-flow zone, and hence the theory can be 
divided there (the treatment of the film-forming zone is not taken up below, but see 
References 6 and 7 ) .  

GOVERNING EQUATIONS 

As an illustrative case the steady, incompressible, isothermal flow of liquid in the forming 
zone of the coated liquid film is considered: see Figure 3. The governing equations are made 
non-linear by the convective term when the Reynolds number is not vanishingly small, and 
always by an unknown free surface. The formulation of the problem in the sheet-forming 
zone is similar, except that there is a static contact line and no dynamic one. 

In analysing the impinging zone the velocity of the inflowing curtain can be taken as 
known, and so can its position relative to the coating die. The flow is of course governed by 
the momentum and continuity principles, shown in Figure 3 in the dimensionless form of 
their pointwise versions. Length is measured in units of the ultimate thickness of the coated 
film, h,. v is velocity measured in units of substrate speed U. T is the stress tensor, here 
taken to be that of Newtonian liquid (T = -1p + pu + ( V U ) ~ ~ ,  and is measured in units of 
pU/h,, where p is viscosity. Re = pUh,/p is the Reynolds number and St = pU/pgh; is the 
Stokes number. t is a unit vector in the direction of the force of gravity. 

At internal interfaces between stratified layers of different viscosity in multilayer coating 
(touched on below) the momentum principle requires continuous traction, i.e. n . TA = 
rnn . TB when, as is usual, the layers are miscible; m = pB/pA is the ratio of viscosities of layer 
B and layer A (a similar condition can be used to account for air drag). The continuity and 
10-slip conditions of course require vA = vB. 

Y 

Figure 3. Impinging zone in curtain coating, with governing equations and boundary conditions 
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At free surfaces the momentum principle requires that normal stress in the liquid (relative 
to pressure in the gas, which is here taken as inviscid and inertia-free) balance any capillary 
pressure, as seen in Figure 3. Capillary pressure requires a curved free surface and hence a 
unit tangent t that varies with distance s along the surface. The magnitude of the ratio of the 
contending stresses is measured by the capillary number, Ca=pU/a, where a denotes 
surface tension. 

At free surfaces the continuity principle requires that there be no flow across the surface, 
which is the familiar kinematic boundary condition n . v = 0, n being the unit normal. 

At some chosen outflow ‘boundary’ far enough downstream on the moving substrate the 
flow is fully developed translation and so the mass and momentum fluxes are known there. 
Or else at an outflow ‘boundary’ chosen closer the further relaxation of the developing flow 
into such a state can be described by a boundary condition of the third kind, which is derived 
from asymptotic analysis of the relaxation process.829 

At the surface of a solid or flexible substrate there is neither slip nor penetration, and so 
the liquid velocity is that of the substrate. The neighbourhood of the dynamic contact line, or 
wetting line, is an exception. There the momentum principle requires some slip if the 
situation is idealized as steady, two-dimensional, complete displacement of the air originally 
in contact with the Otherwise a non-integrable stress singularity arises in the 
abrupt change in boundary conditions at the putative line.13 The slip can be described by 
Navier’s old boundary condition with slip coefficient p (1/p is the transfer coefficient for 
tangential momentum), which is a boundary condition of the third kind, or by prescribing an 
equivalent distribution of slip velocity in a condition of the first kind.l3-I5 There is a length 
parameter, p~ in the first case, that measures the extent of substrate surface where slip is 
significant. 

At the wetting line the momentum principle also requires specifying the fluid mechanically 
apparent dynamic contact angle eD, unless the capillary number is high. High capillary 
number implies that the effect of capillary pressure, and hence of free surface curvature, is 
restricted to a scale smaller than that on which the wetting line appears to exist. The dynamic 
contact angle is then a dependent variable. This is so in the sample results below for the 
impinging zone. 

Asymptotic analysis of the stress singularity caused by the no-slip condition at static 
contact lines, as in the sheet-forming zone, indicates that the singularity is integrable, i.e. the 
total force exerted by the liquid on the solid remains bounded, and so there is no need to 
admit  lip.'^,'^ If a static contact line does not remain pinned at a sharp corner or 
compositional discontinuity but rather is free to migrate, an apparent static contact angle dC 
has to be specified. This angle seems unaffected by changes in the adjacent flow field.17 

Such problems as posed here have, heretofore, been locked away from solution. There is a 
set of keys to solving them. The first is finite element basis functions. The second is 
Galerkin’s method of weighted residuals. Another is efficient description, or parametrization, 
of free boundaries. Another is isoparametric mapping by the finite element basis functions 
onto a fixed computational domain. The most novel aspect of coating flow theory is the 
parametrization of free boundaries and the related tessellation of the flow domain into 
subdomains on which the governing equations are solved by the Galerkidfinite element 
method. 

FREE BOUNDARY PARAMETRIZATION AND DOMAIN TESSELLATION 

To calculate a prediction of curtain coating requires iteration to solve the non-linear set of 
governing equations. Crucial to reliable, efficient readjustment of free boundaries at each 
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Figure 4. Free boundary parametrization by means of spines 

step of the iteration are the flexibility and simplicity of their parametrization and of the 
associated tessellation of the flow domain into finite elements. Major advances were 
Ruschak's boundary  support^'^ and then the simple idea of ~ p i n e s . ~ . ' ~  Spines are conve- 
niently located and oriented lines (or curves), is indicated in Figure 4; each is defined by a 
base point x i  and a direction e'. Along a spine the distance from the base point to a free 
surface or interface, e.g. h$, hk or hi, is the free surface's or interface's local co-ordinate, an 
unknown to be solved for (along a spine the distance to a rigid wall is the rigid wall's local 
co-ordinate, which is known). There is no reference surface and the dangers of a reference 
surface are avoided: spines can be located and oriented to accommodate highly irregular 
configurations without the free surface representation becoming singular. 

The base points and directions can be made to follow adaptively and automatically such 
features as the location x* of the dynamic contact line and the inclination 6, of a zone's 
inflow or outflow plane (where flux-matching conditions are to be imposed). The set of 
features xyc on which base points depend, and the set ti* on which orientations depend, 
become parameters in the base point locations and directions, e.g. xB(x*) and e'(&), and can 
be taken as unknowns in the iterations and continuations described below if functional 
requirements are imposed on them. 

In conjunction with spine placement the flow domain is tessellated into quadrilateral 
elements (triangles can be employed as well), as shown in Figure 5. Two opposing sides of 
each element are defined by spines. The other two sides are made to intersect those spines at 
fixed relative locations wi between the boundary surfaces (see also Figure 4); these sides are 
then interpolated between the spines by isoparametric transformation of a standard quadrila- 
teral, namely a square. Thus many of the elements have two curved sides that reflect free 
surfaces. 

The intersections are the vertex nodes of elements. Other nodes likewise lie on spines at 
positions given by prescribed proportions wi of the local thickness of the flow. Thus the 



COATING FLOW THEORY 213 

Figure 5. Tessellation of flow domain into finite elements: example of stratified flow with two free surfaces and one 
interface 

location xk(h) of node k ( i ,  j )  on the ith spine is related to the positions, e.g. hg and h& of 
any free surfaces intersected by that spine. The column vector h denotes the entire set of 
coefficients and parameters that define free boundary shapes and spine placement, namely 
{hB, h,, . . . , x,, &}. This scheme is readily extended to accommodate stratified flow, as the 
example in Figure 5 shows. There the node arrangement is that of the nine-node biquadratic 
finite element basis functions for velocity and four-node bilinear ones for pressure in a 
standard 'mixed interpolation' approach2" that has been used in developing the present 
theory (three-node linear discontinuous basis functions may be superior for the pressure 
field21322). 

The isoparametric t r a n ~ f o r m a t i o n s ~ ~ * ~ ~  of the standard square in the (5, q)-plane that 
produce all of the elements in the flow domain actually define a global map of a complicated 
curvilinear free surface flow into a rectilinear domain, as shown in Figures 6 and 7, where the 
parameters (& q) are simple Cartesian co-ordinates. This domain can be called the computa- 
tional domain. When there is flow splitting, as in roll coating, the computational domain is 
not a single strip, but has a branched shape corresponding to the way separate families of 
spines are patched together (Figure 7). In every case the global values of the (&q)-co- 
ordinates can be suppressed but the adjacency structure of the elements in the physical 
domain is preserved. 

The momentum and continuity equations are in effect solved in the computational domain, 
the isoparametric mapping onto the physical domain being part of the problem. It is this 
mapping that locates the free surfaces of the coating flow, in the way described in Figure 6. 

The local isoparametric mappings by the biquadratic finite element basis functions make 
the free surfaces simple one-dimensional quadratic mappings of straight lines, q = constant, 
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Figure 6. Local map of flow domain and free surfaces by isoparametric mapping 

in the computational domain (6, q). The result is an expansion of free surface shape in terms 
of h, the set of spine locations and free surface parameters. This is consistent with the expansion 
of the velocity field and decidely superior to earlier practice (cf. References 15, 25). It is akin 
to the use of local co-ordinate patches well-known in differential geometry and avoids the 
need for a reference surface. 

EXAMPLE: CURTAIN COATING EXAMPLE ROLL COATING 

Figure 7. Global map of flow domain and free surfaces by isoparametric mappings 
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Because the free surfaces are curves of q = +l or q = -1, the formulae for their unit 
tangent and normal vectors, which are needed for boundary conditions, are simple and 
computationally convenient. Moreover, evaluated at surface Gauss points (see below) they 
are consistent with the requirements of conservation of incompressible mass (continuity 
equation) and impenetrability of the free surface to mass (kinematic boundary condition): cf. 
Reference 26. These are added benefits from the method of surface parametrization, a key 
to solving free boundary problems. 

GALERKIN WEIGHTED RESIDUAL EQUATIONS 

Residuals of the differential equations and boundary conditions that express conservation of 
mass and momentum are, as usual, made orthogonal to the finite element basis functions 
used to approximate the pressure and velocity fields and free boundary shapes. The resulting 
algebraic equations, most of them non-linear, are, of course, the discretized analogue of the 
original viscous free surface flow problem. Certain aspects warrant mention here; a com- 
prehensive discussion is available elsewhere? 

There are advantages in leaving the differential equation of momentum conservation in its 
natural form, which is in terms of the divergence of the total momentum flux-convective as 
well as diffusive flux. Then in its weak form, i.e. in the Galerkin weighted momentum 
residual after the usual invocation of the divergence theorem, the boundary residual can be 
replaced by the residual of the momentum flux boundary condition. Such residuals are shown 
in Figure 8 for the free surfaces, for the outflow plane, and for the neighbourhood of the 
wetting line in the impinging zone, i.e. the slip region. The boundary residual vanishes at the 
rigid substrate and the inflow plane, where there are essential boundary conditions (it would 
vanish too on a plane of symmetry, if one were present). 

MOMENTUM FLUX g~ FROM 
FULLY DEVELOPED REGIME - NEUMANN CONDITION 
ASYMPTOTIC ANALYSIS DOWNSTREAM - ROBIN CONDITION 
APPROXIMATE FILM PROFILE EQUATION 
-C 1-D FEM SOLUTION 

U - 
\R*SLlP REGION = +b,/Bk # L’(Y - !!)ds] 

Figure 8. Galerkin weighted momentum residual and boundary contributions 
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The momentum flux boundary condition at a free surface contains the surface curvature 
dt/ds, as recorded above. But this curvature can be eliminated in favour of the unit tangent 
itself, by applying the surface divergence theorem to the residual of the boundary condition, 
as has been done to arrive at the form in Figure 8. As a consequence, lower-order finite 
element basis functions, i.e. ones that are piecewise once-differentiable to yield the unit 
tangent, suffice for the representation of a free surface (the quadratic basis functions actually 
used are piecewise twice-differentiable). This key tactic is due to  Ruschak. l8 

The natural form of the momentum equation also accommodates nicely the slip boundary 
condition near a wetting line. The size of the slip region and the magnitude of the slip 
coefficient are empirical inputs and the sensitivity to them of a computed prediction should 
be evaluated. In the sample results presented below, slip was restricted to the element 
adjoining the dynamic wetting line and was sufficient that further increase had no appreci- 
able effect outside that element. 

The natural form also accommodates the dynamic condition which is demanded by physics 
at inflow and outflow boundaries: the total momentum flux m must be continuous. There are 
three ways of imposing this: 

1. If the finite element domain is extended far enough downstream (upstream) to reach a 
fully developed flow regime, impose the fully developed flow through a Neumann 
condition, i.e. vanishing diffusive momentum flux in the streamwise direction (or, at an 
inflow boundary, through a Dirichlet condition, as already done here because doing 
otherwise saves little length of the finite element domain). 

2. If a linear asymptotic analysis is available for the relaxation of the flow into the fully 
developed regime, use it to construct a Robin condition, or boundary condition of the 
third kind, for the open flow boundary. Typically this permits the finite element domain 
to be shortened from what is needed for comparable accuracy when a Neumann 
condition (or, alternatively at an inflow boundary, a Dirichlet condition) appropriate to  
fully developed flow is i m p o ~ e d . ~  

3. If no linear asymptotic analysis is available, but equations for a non-linear asymptotic 
regime can be set up and reduced to  a one-dimensional problem, e.g. an approximate 
film profile equation and boundary conditions, match this problem to the main, 
two-dimensional problem at the open flow boundary of the latter; and then solve the 
two problems simultaneously, for they are necessarily coupled by continuity of mass 
flux, momentum flux, and stream  surface^.^' 

The matching strategy, which is the key to dividing a coating flow into different zones, is 
shown in Figure 9 for the upstream region where the curtain is generated. In the sheet- 
forming zone around the lip of the die two-dimensional analysis is needed and the velocity 
v = iu + j q  pressure p ,  and free surface locations x, are all expanded appropriately in the finite 
element basis functions, as noted in Figure 9. In the curtain flow zone downstream the 
curtain continues to accelerate and approach purely extensional flow as it falls under gravity. 
For this developing flow there are asymptotic, one-dimensional, coupled, non-linear, 
differential equations for the curtain thickness H and midsurface inclination 0 as functions 
of distance s along the sheet.27 The Galerkin/finite element method is advantageous €or this 
equation system too, and so the two unknowns are expanded in one-dimensional, quadratic 
basis functions. That mass flux and total momentum flux be continuous at the matching plane 
implies that the inflow boundary conditions for the asymptotic equations are the outflow 
boundary conditions for the two-dimensional flow problem. (Comparison tea lg  show the 
practice of imposing the matching condition on viscous stress makes total momentum flux 
continuous to a closer approximation than imposing the condition on the latter.) 
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2-D ANALYSIS OF COMPLETE NAVIER-STOKES SYSTEM 
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Figure 9. Matching strategy for multiple flow zones: example from curtain coating 

Regardless of the way an open flow boundary is handled, the sensitivity of calculated 
predictions to the location of the boundary plane has to be checked and that location shifted, 
if necessary, until its effect is negligible. This can be handled adaptively and automatically. 

The kinematic condition that no liquid crosses a free surface (or internal interface) can be 
regarded as an essential boundary condition. Nevertheless it is advantageous to work with 
weighted residuals of the kinematic conditions, namely R k = j  4'((f q = *l)n. v ds where 
the integral extends over the free surface. Because the basis functions 4k are Lagrange 
polynomials with the property that C 4k = 1, all of the equations R$ = 0 when summed yield 
J n . v ds = 0 which is plainly in accord with the requirement of global as well as element-level 
mass conservation. Incidentally, to evaluate the weighted residuals Rk, the unit normal n is 
computed only at the Gauss points of the numerical integration. 

In order to prescribe the dynamic contact angle OD at a dynamic contact line, the 
vanishing of the kinematic boundary residual that is weighted by the basis function belonging 
to the contact line node has to be discarded and replaced by n . % = cos OD, where n is the 
normal to the free surface and n, is the normal to the substrate, both at the contact line. 
There is a less successful alternative that has been employed in the past. That is to use for 
the replacement the n-component of the momentum residual weighted by the basis function 
+'(& 7 7 )  belonging to the same node, with n making exactly the angle OD with n,; the result, 
especially at high capillary numbers, is a distorted free surface near the contact line and a 
computed dynamic contact angle that differs substantially from the prescribed one. 

COMPUTATION OF COEFFICIENTS OF BASIS FUNCTIONS 

With the Galerkin/finite element reduction of the governing equations there are as many 
algebraic equations for vanishing components of C#J (6, q)-weighted momentum residuals as 
there are velocity component coefficients of biquadratic basis functions 4' (see Figure 9). 
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Likewise there are as many vanishing +!I[((, ?)-weighted mass residuals RL=J .v d V  as 
there are pressure coefficients of bilinear basis functions 4'; and as many vanishing 
&k(5, 9 = f 1) weighted kinematic residuals Rk = J  &'(& q f 1)n. v ds as there are free surface 
coefficients hk in xk(h) (see Figure 6). The same is true of residuals and coefficients 
associated with the approximate sheet profile equations (see Figure 9). Thus the set of 
equations is complete for simultaneously calculating the velocity and pressure fields, free 
surface location, and profile of the asymptotically accelerating curtain. 

Even at zero Reynolds number, i.e. vanishing non-linear effect of momentum convection, 
a free surface generally makes the equation set non-linear and so to predict a steady flow 
state requires an iterative computation that converges to that state. From the first finite 
element analysis of viscous free surface flowz8 until recently the location of a free surface has 
been sought by successive approximation techniques in which the location is updated on the 
basis of a boundary condition that is ignored during the calculation of the flow field. But it is 
now ~ l e a r ' * ~ ~ ~  how to employ the full Newton iteration process to solve the entire set of 
equations simultaneously for free surface location as well as velocity, pressure, and asympto- 
tic profile-a grand Newton iteration that provides strikingly improved rate of convergence. 
This is a key to efficient prediction of coating flows. 

Written in terms of a vector of finite element coefficients 01 and a vector of weighted 
residuals R(a), the Newton iteration process is of course the repeated solution of the system 
of linearized equations 

J[a,,+l-%]=-R(%), J=dR/dc~ 

For the problem pictured in Figure 9 the structures of the column vector of all the 
residuals and of the matrix of contributions to the Jacobian matrix 3 at element level are 
detailed in Figure 10. The crux is the fourth column of the contribution to the Jacobian from 
each element, i.e. the 'element stiffness matrix'. That part of the Jacobian consists of the 
sensitivities of x- and y-components of weighted momentum residuals and weighted con- 
tinuity and kinematic residuals to the locations of the free surface nodes in the spine 
parametrization. Only elements that adjoin free surfaces (or interfaces) contribute to the 
weighted kinematic residual. Only for elements that change shape by the isoparametric 
mapping as iteration proceeds are the sensitivities dR/dh to the free boundary parameters not 

X-MOMENTUM 0SZ.s) 3 

y-MOMENTUM 0Y5.1)  V' 

CONTINUITY *YF*q) P' 

KINEMATIC B.C. 0yC. q =+1) hIT, hlg, ... 

MATCHING CONDITIONS - HI. el 

RESIDUAL WEIGHTED 
VECTOR RESIDUAL 

CORRESPONDING 
WEIGHTING UNKNOWN 
FUNCTION COEFFICIENTS ELEMENT STIFFNESS MATRIX 

AVERAGED TANGENTIAL xys) Hm 
MOMENTUM 

AVERAGED NORMAL 5%) 8" 
MOMENTUM 

Figure 10. Overview of grand Newton iteration for evaluating coefficients of all finite element basis functions 
simultaneously 
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R = I( Q,b) + L( p,h) WHERE QT = (ul, ..., vl, ..., p', ... ) 
hT = (hT1, ..., hB1, ... ) 

q =  + I  
+ I  -a q =  + I  

TIT 
+ I  

7 

Figure 11. Evaluation of sensitivities of weighted area and line residuals to free boundary parameters 

zero. (For the elements adjoining matching planes there are additional sensitivities that are 
not represented in Figure 10.) The key to evaluating these Jacobian entries was found by 
Saito .29 

By examining the surface and line integrals (from the volume and surface integrals of the 
two-dimensional flow) in the weighted residuals as expressed in the (5, q)-computational 
domain, it is found that the needed derivatives can be derived in relatively straightforward 
fashion. Doing so requires recognizing the role of the Jacobian $(5, q) of the local 
isoparametric mapping of the standard (E, q)-square into the quadrilateral (x, y)-element, 
and of the scale factor s, (6, q = +1 or = 1) of the associated mapping of an edge of the 
square into the free surface of an element that adjoins the free surface. The formulae for the 
needed derivatives are displayed in symbolic form in Figure 11 (cf. References 6 ,  29). fi is 
the column vector of finite element coefficients of the velocity and pressure fields, i.e. the set 
{a, v, p}; and h, described above, represents the entire set of coefficients and parameters that 
define free boundary shapes and spine placement. In the computational domain, the basic 
integrals are over the fixed square A, or fixed line segment So. The Jacobian of the mapping 
is of course 

and the derivatives of the entries can be evaluated from 

axk (h) 

The derivatives hk/dh in turn are found readily from xk(h) (shown in Figure 4). 
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Now, in theory, Newton’s method, correctly formulated and executed, approaches quadra- 
tic convergence rate as successful iteration  proceed^.^' With the complete Jacobian or global 
stiffness matrix J, not only has this proved true in practice: it has proved to be an acute test 
of completeness and correctness of the Jacobian and so is routinely demanded of any 
program used to implement the coating flow theory. 

Compared to successive approximation and Piccard schemes used previously, the grand 
Newton iteration, i.e. when free boundaries, spine placement, and even an asymptotic regime 
are all changing from iteration to  iteration, generally converges in far fewer iterations and 
does so over wide parameter ranges.25 In particular, in the capillary number range around 
Ca = 1, where many coating processes operate, successive approximations to free surface 
shape, whether based on iterating on the kinematic ~ond i t ion~**’~  or the normal stress 
boundary condition,2,’s converge slowly and sometimes succeed only with the aid of artful 
‘underrelaxation’. 

The Jacobian of a converged solution returns added benefits. It is valuable for (i) 
estimating the new solution %(XIN)  to  start iteration when the parameter set is changed from 
nN-1 or IIN, i.e. for first-order continuation; (ii) assessing the sensitivity of the flow state, i.e. 
a converged solution, to  parameters; and (iii) analysing the stability of the flow state to small 
disturbances . 31 

Another key to prediction of a coating flow is finding a start-up approximation w,(II’)-- 
the very first approximation when a program for a particular type of flow is ready and a 
likely parameter set II’ has been chosen-that falls within the domain of practicable 
convergence rate (perhaps with the aid of ‘underrelaxation’ or  ‘overrelaxation’ of Newton 
iteration). Because of their free surfaces, coating flows rarely have limiting cases that are 
linear or otherwise amenable to traditional analysis. Experience has now taught that 
experimental evidence; rough-and-ready physical models; and, sometimes, investing in 
solving some non-linear asymptotic approximation, can all be valuable in placing spines 
appropriately and beginning the search for a successful first approximation. 

The grand Newton iteration process together with start-up and continuation procedures is 
diagrammed in Figure 12; further details are recorded elsewhere.6 When a solution is sought 
at a new value of a parameter the simplest option is zeroth-order continuation, which means 
restricting the parameter change so that the solution of the last case lies well enough in the 
convergence domain of the new case that only a few iterations are required to achieve the 
degree of convergence desired. 

Larger parameter changes may be possible with first-order continuation, which amounts t o  
projection along the parametric gradient of the solution, as in Euler’s method of time- 
integration. First-order continuation takes advantage of the information in the Jacobian 
matrix of the last case. All that is required is the relatively easy solution of a subsidiary 
problem for the continuation vector d, (as indicated in Figure 12), which is then available 
for initializing the next case. 

It has usually proved efficient to control parameter changes after start-up so that the 
Newton process converges (largest change less than in any of the entries in cy, all of 
which are of order unity excepting pressure in some cases), and does so in three to  five 
iterations-never more than seven even in start-up, once a successful start-up approximation 
is found. 

What follow are illustrative predictions of curtain coating flow and flow between rotating 
cylinders which were computed by the theory. At  each iteration the linear system in 
Newton’s method was solved by frontal routine with minor modifications. The 
number of elements ranged from 30 to 100; the number of unknowns from about 400 to 
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Figure 12. Summary of start-up, iteration, and continuation procedures 

nearly 1500. Around 70K octal words of core memory were used. The amount of 
out-of-core memory needed for the frontal routine, which was originally designed for disc 
memory, was up to 200 K octal words; the amount depends strongly on the front width, 
which is sensitive to the shape of the computational domain. Some of the predictions, mainly 
with the smaller numbers of unknowns, were made with a CDC Cyber 74 computer and the 
FTN compiler. Depending on the number of unknowns and the front width, individual 
iteration steps took from 5 to 12 seconds of central processor time. With the larger numbers 
of unknowns the calculations were made with a CRAY-1A supercomputer and took from 
0.5 to 1 second per iteration. 

THEORETICAL PREDICTIONS OF SAMPLE FLOWS 

Calculated flows in the sheet-forming and curtain flow zones of a curtain coaterlg are shown 
in Figure 13. At relatively high Reynolds numbers (flow rates) the trajectory is ballistic, i.e. it 
resembles the path of an unimpeded body. As flow rate is diminished the trajectory reverts 
to antiballistic and passes through a maximum deflection. At still lower flow rates, viscous 
effects shorten the forming zone and the liquid curtain falls almost vertically beyond a short 
distance below the lip of the die. A complete finite element analysis of the flow, including 
configurations in which the underside of the lip is wet by the liquid, settles the causes of the 
curious set of phenomena known as the teapot effect.17 

That the predictions are not sensitive to further refinement of the tessellation has been 
tested, but the critical test of the theory is comparison with experiment. In Figure 14 precise 
measurements of the outer free surface profile are compared with the predictions from 
Figure 13. The agreement is excellent, except at intermediate Reynolds numbers of 5 and 7, 
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Figure 13. Deflection of liquid film falling over lip of inclined slide-'Teapot effect'. Re =pq/p, where q is flow rate 
per unit width; N , ~ u ( 4 p ~ g / p ) - " ~  = 1.15 

where the deflection is greatest and the prediction most sensitive to errors in measurement of 
flow rate and liquid properties, as well as to slight wetting back along the underside of the 
lip. 

Flow in the coated-film forming zone, or impinging zone, largely determines the parameter 
range of operability of curtain coating. Figure 15 displays a sequence of predictions at high 
enough capillary number, or low enough surface tension, that the apparent dynamic contact 
angle is determined solely by hydrodynamic forces and becomes a dependent variable.34 As 
the ratio of substrate speed U to impingement speed V rises, the dynamic contact line shifts 
downstream and the apparent dynamic contact angle, measured through the liquid, ap- 
proaches 180". It is commonly hypothesized that 180" is the upper limit for coating without 
visible air 

Consequently the predicted lines of constant apparent dynamic contact angle 0, in the 
plane of Reynolds number Re and speed ratio U/V are of particular interest. Such lines are 
plotted in Figure 16. The points shown are conditions at which patents claim that curtain 
coaters have operated successfully.34 Thus the high capillary number theory, even though it 
omits the effect of surface tension, appears to account well for the essential aspects of 
dynamic wetting at high coating speeds. Detailed understanding and accurate prediction of 
the air entrainment limit require more refined analysis, which is under way. 

The last predictions are of flows between counter-rotating and co-rotating cylinders, such 
as occur in forward and reverse roll coating (see Figure 1). The simplest case is film splitting 
between rolls turning at equal speeds but in opposite directions. Figure 17 shows the right 
half of the film-splitting zone computed by C ~ y l e . ~  Prominent is the slowly recirculating 
eddy, which shrinks and eventually disappears as capillary number rises, i.e. as the relative 
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POSITION OF TOP FREE SURFACE 

Figure 14. Predicted outer free surface profile of deflected curtain (Figure 13) compared with measured points 

importance of surface tension falls. Almost all analyses of roll-coating flows have been by the 
so-called lubrication approximation, which did not and cannot account for the recirculating 
eddies. Such eddies have been detected and photographed in the laboratory, and they can 
have severe consequences in practical situations. 

How changing the speed ratio of the rolls alters the film-splitting flow is indicated by 
Coyle’s computations plotted in Figure 1K3 More liquid leaves the gap on the faster-turning 
roll and the eddy pattern distorts. At a speed ratio of 2-5 one eddy is gone and the other is 
much weakened. 

The flows in Figures 17 and 18 can occur on the downstream side of the nip between 
‘forward-turning’ rolls. Examples of flow fields on the upstream side of the nip, the so-called 
‘back bead’, are displayed in Figure 19.37 In the diagram above, the upper roll is stationary 
so that the contact line on it is static. The main liquid stream follows closely the moving roll 
but drives a prominent eddy. In the diagram below, both rolls are turning at the same speed 
and the liquid comes in contact with the upper roll at a dynamic contact line. The eddy 
structure is greatly altered and there is a remarkable S-bend in the streamlines of arriving 
liquid that wends its way to the neighbourhood of the upper roll surface. The rest of the 
incoming film follows the surface of the lower roll. But in the flow field are two contra- 
rotating eddies, which here as in other two-dimensional flows represent trapped material. 
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Figure 

B 
17. Symmetrical film splitting between counter-rotating rolls: right half of flow field. Re = 

where D is roll diameter and h, is the minimum distance between their surfaces 
0; D/h,= 100, 

Figure 18. Streamlines in symmetrical and asymmetrical film splitting between rolls. Ca = 0.1; Re = 0 ;  D/h, = 100 
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Figure 19. Streamlines in back bead or rolling bank of forward roll coater. Ca = 0.1 1; Re = 0; D/h, = 100 

These several cases of flow between rolls were actually steps along a path that continued to 
the goal of theory of reverse roll coating: an example of which is shown in Figure 20. Liquid 
arrives from the right on the lower roll. The portion of the incoming flow near the roll 
surface passes directly through the nip and departs as the film at lower left. Liquid a little 
higher up in the incoming flow also passes through the nip but goes to wet the dry upper roll 
surface (or surface of a flexible substrate carried by the roll) at the dynamic wetting line; then 
it is carried back through the nip and exits deep in the film leaving at the upper right. Liquid 
at the t o p  of the incoming flow never reaches the nip, but skirts a large eddy and resurfaces 
at the top of the film leaving at upper right. Besides the large, recirculating eddy on the right, 
which has been seen, there is a small, unexpected one on the left side of the nip. 

What is most intriguing about the flow field shown in Figure 20 is the rapidly varying 
sequence of deformations and deformation rates a parcel of liquid experiences as it passes 
through the various flow zones? The numbers tabulated are shear rates and extension rates 
in the Newtonian flow of a liquid parcel that passes through the nip close to the surface of 
the lower roll. The experience of a parcel that passes close to the dynamic wetting line can be 
far more severe and is sensitive to the local slip regime. In high-speed coating passage times 
through the nip can be much less than 0.1s. These calculations bring out the intensity, 
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Figure 20. Streamlines and deformation rates of various flow regions in reverse roll coating. Ca =0.1; Re = 0; 
V,,,/V,= 0.5; D/h,= 100, where D is roll diameter and h, is the minimum distance between rolls 

transience, and complexity of liquid deformation that is typical not only of flows between 
rolls, but also of the forming zones of most other coating flows (compare Figure 1). 

One question the theoretical predictions immediately raise is whether liquids that respond 
as Newtonian in conventional rheological testing always behave as Newtonian in the forming 
zones of coating flows. 

CONCLUSION 

These sample results illustrate the power and effectiveness of the coating flow theory based 
on finite element and asymptotic analysis. Recent advances make the finite element treat- 
ment of viscous free surface flows more efficient and more generally applicable: spine 
parametrization of free boundaries; systematic isoparametric mapping; adherence to mass 
flux and total momentum flux formulations, especially in dealing with free boundaries and 
open flow boundaries; systematic use of surface and volume divergence theorems in order to 
impose free surface boundary conditions in their natural form; size reduction of computa- 
tional domain by means of boundary conditions derived from asymptotic analysis or by 
matching to one-dimensional finite element solutions of asymptotic equations; full Newton 
iteration of the entire set of algebraic equations; and parameter continuation methods to 
trace out trees of solutions of the usually highly non-linear equation sets of the discretized, 
free boundary flow problems. 

The theory yields detailed predictions of free surface and interface shapes, velocity fields 
and associated strain-rate and vorticity fields-thereby revealing unwanted eddies and slow 
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flow regions, for example-as well as pressure and viscous stress fields. The predictions can 
be used for rheological purposes. They can be used to investigate effects of changing the 
design of the coating die, its relationship to the substrate, and other operating variables. 
They can be used to reveal the physical mechanisms of practically important aspects of 
coating processes, such as bounds on operability. These predictive capabilities are all the 
more important because the small scale and complexity of most coating flows makes flow 
visualization difficult, important local details experimentally inaccessible, and accurate meas- 
urement formidable-especially measurement of dynamical quantities. 

Further developments are in the offing, some of them already far along in the research 
programme at the University of Minnesota, some of them being pursued by several research 
groups around the world. The theory will be made even more flexible and also more 
accessible to non-specialist users by schemes of automatic, adaptive spine placement, domain 
tessellation, and tessellation refinement in regions of steepest gradients in the flow field.38 
Advancing understanding of the physics of wetting and of contact lines will be incorporated 
into the Once a steady, two-dimensional flow state is predicted, extremely 
important issues are its response to small disturbances and its uniqueness, issues that call for 
analysis of stability and bifurcati~n.”,~~ Unsteady flow states of start-ups and upsets (such as 
those caused by substrate splices passing by) require analysis of unsteady coating  flow^.*^*^^ 
Successful coating flows are two-dimensional except near the edges of the flows: various of 
the edge effects are practically important and deserve three-dimensional analysis. Many 
coating processes deposit non-Newtonian liquids, and although shear-thinning is easily 
handled by the current t h e ~ r y , ~ , ~ , ’ ~  incorporating visco-elastic phenomena remains a chal- 
lenge.42 Many liquids being coated contain surface-active agents and volatile 
the effects of which require incorporating mass transfer, heat transfer, and surface-tension- 
gradient effects into what is basically a fluid mechanical theory. 
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